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We examine the problem of flow around a body from whose interior a msg- 
netic field is excited in the flow of electrically conducting fluid; the 
solution of this problem is carried out for infinite and large values of 
the magnetic Reynolds nuaber. ‘Ihe magnetic forces acting on the body are 
determined. It is shown that for large values of the magnetic Reynolds 
nuder the magnetic forces on the body are analogous to viscous friction 
and profile drag, and can accordingly be called the magnetic friction 
force and the magnetic profile drag. 

We examine the case for which not only a magnetic field but also an 
electric field is excited from inside the body. It is shown that electric 
field sources located inside the body have no influence on the flow Ibut- 
side the body. 

1, Formulation of the Problem. With the increase in the speed 
of flying apparatus there is an increase in the ionization of the air 
flowing through the shock wave ahead of the body. lhe air flowing around 
the body becomes electrically conducting, and it becomes possible to 
influence it by means of a magnetic field. 

Let the body, filled with dielectric and containing magnetic poles, 
be immersed in an electrically conducting fluid. It is necessary to de- 
termine the hyd~d~~ic~ magnetic and electrical fields to find the 
forces acting on the body. 

l’he equations of motion have the form 11, 2 1 : 

(1.1) 

div V = 0, divH = 0, Rot(VxH) +&AH=0 
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Here V, H are, respectively, the velocity and the magnetic field in- 

tensity, p is the pressure, p the density, c the speed of light in vacuum, 

(I the specific electrical conductivity, v the kinematic coefficient of 

viscosity. Equations (1.1) are written in the Gaussian system of units. 

‘lhe magnetic permeability of the fluid and the body is taken equal to 

unity, and p, a, v are assumed to be constant. 

For simplicity, incompressible flow is considered. Allowing for com- 

pressibility will not introduce any changes in the formulation of the 
problem if there are no shock waves in the flow. Flows with shock waves 

are not considered in this paper. 

Once equations (1.1) are solved, the intensity of the electrical field 

E in the flow is determined: 

E= &R&H-; [VxH] (1.2) 

Inside the body the following equations hold good for the magnetic 

field: 

Rot H = 0, divH=O for H=-grad+, A+=0 (1.3) 

where 511 is the scalar potential of the magnetic field. Inside the body 

the source of excitation of the magnetic field is given, namely, currents 

flowing in the coils of solenoids. Mathematically, this is equivalent. to 

the specification of the singularities in the solution for II,. 

Assuming that the dielectric constant of the dielectric which fills 

the body has a constant value, as in (1.3) we have the following equations 

for the electric field 

E = - grad F; AT = 0 

where \I/ is the potential of the electric pole. 

(1.4) 

Next we consider the formulation of the boundary conditions. At in- 

finity the velocity vector and pressure are given, and the intensity of 

the magnetic and electric fields reduce to zero: 

v = v,, p = PO07 H = 0, E=O (1.5) 

On the body we have the usual hydrodynamic condition that there shall 

be no flow through the surface, that is that for non-viscous flow V, = 0 
(here the subscript n denotes the velocity vector normal to the surface), 
or that for viscous flow there shall be no slip, that is, V = 0. 

For the component ff,, of the magnetic field intensity, on the boundary 

of the body we have ] 3 ] Hn2 - Hnl = 0 (index 1 denotes the region inside 

the body and index 2 denotes the region in the flow). Further, on the 
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body we have 

‘+ i = n x (H,-H,) (1.6) 

where i is the surface current density and n is the unit external normal 

to the body. 

Let us analyze condition (1.6) in more detail. For this purpose, we 

return to the last of equations (1.1). Putting this equation in non- 

dimensional form, we obtain 

Rot [v x h] + H’- Ah = 0 
( 
‘R,= - 

4xaV,L 

m CZ ) 
(1.7). 

(The non-dimensional velocity and field intensity are represented by v 

and h, respectively. 1 The dimensionless quantity Rm is usually called the 

magnetic Reynolds number. In the expression for RI, the quantities v,, 

the magnitude of the velocity at infinity, and L (a characteristic body 

length) appear as characteristic quantities. In equation (1.7) the coeffi- 

cient of the second tefm characterizes the influence of the dissipation 

of magnetic energy on the general flow picture. In the limiting case, 

with Rm infinite, equation (1.7) (returning to dimensional quantities) 

becomes 

Rot [V x II] = 0 (1.8) 

which expresses the conservation of magnetic lines of force for a fluid 

contour and the absence of dissipation of magnetic energy. 

Since on our assumption the body is a dielectric, the surface currents 

(1.6) flow in an infinitely thin layer of fluid next to the body. If the 

number Rm is finite, the presence of surface currents leads to an intense 

dissipation of magnetic enerm and a diffusion of the discontinuity; 

therefore, in stationary flow of an electrically conducting fluid, tan- 

gential discontinuities of the magnetic 1ntenslt.y vector are impossible 

not only in the fluid [ 2 1 but also at the wall. Therefore it follows 

that i = 0 in equation (1.61, so that 

n Y (Ii, - IJ,) = 0 or II,, -- II,, = 0 (1 .!J) 

where H is the component of the magnetic field intensity vector parallel 
to the wall. 

Finally, the condition H”, - lh, = 0, and (1.31, for finite Rm give 

II, --- II, 0 (1 .20) 

For R,,, equal to infinity, the conditions on the body remain in the 
form II”, - /In1 = 0, together with (l.h), wl lere i is to Le found from the 
solution of the prollem. 

E&ation (1.10) may be regarded as a “no-slipW condition Letween tLe 
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outer and inner magnetic fields. 

Resides the conditions already enumerated, yet another boundary condi- 

tion has to be satisfied on the surface of the body; this expresses the 

fact that current cannot flow through the surface. The projection of the 

vector of the volume density of the current j on the normal to the body 

must be zero: 
4x 
c jn = (Rot H),z = 0 

It is not difficult to see that this condition is fulfilled automatic- 
ally for finite RIR. This foll ows from equation (1.3) and (1.9). As will 

be explained below, for R A equal to infinity this condition is inessential. 

After solving equations (1.1) and (1.3) with boundary conditions (1.5), 

condition I’,, = 0 (or V = 0 in the presence of viscosity), and condition 

(1.10) for Rn equal to infinity, equation (1.8) is used instead of the 

last of equations (l.l), and instead of (l.lO), equation (1.6) and the 

equation of continuity of ‘the normal components of the field are used; 

the electrical field outside the body can then be found from equation 

(1.2). To find the field inside the body we have boundary condition [ 3 I 

E,, - E,, = 0 (1.11) 

where the index r denotes the tangential component of the electrical field 

intensity. 

With I$ 1 found, we determine the electrical field potential 4 on the 

body surface; then from Dirichlet s solution of laplace’s equation we 

find + inside the body. 

We may note that on the boundary between the fluid and the body there 

appear surface charges, whose intensity y may be found from the relation 

4 ny = En, - En,. From equation (1.21, and allowing for the non-slip con- 

dition and the condition that there shall be no flow of current through 

the body surface (Ibt f$ = 0 at the wall ), we have En, = 0, and therefore 
J/c- ( l/4 77 )Enl. 

It is evident that the electrical field sources located inside the 

body, which change the field inside the body, exert no influence on the 

external flow. In fact, in this case the Laplace equations for the 

electrical field potential will have to be solved, allowing for the pre- 

sence of electrical field sources, which is mathematically equivalent to 

the appearance of certain singularities in the solution. In the final 

result, only the polarization of the body changes (y changes). 

Next let us detenine the forces existing on the body, owing to the 

flow. The magnetic field will alter the hydrodynamic force. In addition, 

there appears a magnetic force 
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Fm=- 
ss 

p,rJs = - -&- \ \ [H2n - 2finH]ds (1.12) 
t s s 

In this integral over the surface s of the body, the stress p, is 

applied to the unit area having the direction of n, the external normal 

to the body, The vector p, with the Maxwell stress tensor for the magnetic 

field: 

Pi,+ = & [+ H2aik - HiHk ] 

If we enclose the magnetic field sources inside the body by a closed 

surface o lying entirely inside s, and apply the generalized Ostrogradsky 

formula to the volume r between s and 3, we obtain 

\\ p&s = \\\div Pdt 
4-u z 

Since div P = Cl/4 nl H x Rot H = 0 everywhere in the volume, in 

accordance with (1.31, equation (1.12) may be rewritten in the form 

F ’ m=z-- 8;; \I 
’ [ H2n - ZH,H] do 

u 

Here n is the outward normal relative to the volune enclosed inside o. 

Ihe magnetic force, formally calculated by integration over the sur- 

face of the body according to equation (1.121, thus acts on the magnetic 

field sources, as was to be expected. 

2. Flow around bodies at large values of Rn. In problems of 

external aerodynamics, even at very high flight speeds, the number RI is 

of order unity [ 4 I. However, an investigation of the flow at large values 

of the number RI is of considerable interest, for the solutions show how 

the magnetic and hydrodynamic fluxes change places with increasing values 
of R II* 

As a preliminary we will examine the problem of Rn = m. From equation 

(1.81, which expresses the fact that a magnetic line of force moves with 
the fluid particles attached to it, and from the condition at infinity 

H= 0, we obtainH= 0 over the whole flow. From the condition of con- 

tinuity of the normal component of the field it follows that H,, = 0. To 

calculate the field inside the body it is then necessary to solve equa- 

tion (1.31 with this boundary condition, Thus, the surface of the body is 

a surface of tangential discontinuity of the magnetic field. lhe density 
of the surface current flowing on the boundary between the body and the 

fluid is determined by equation (1.6) together with H, = 0: 
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47c . 
cr=-n~H, 

(the vector H, lies in the plane which is tangent to the body surface). 

‘lhe surface currents shield the magnetic field existing inside the body, 

so that in the flow we have H = 0. 

For example, consider a circular cylinder of infinite length and 

radius r, along whose axis there flows an electric current of intensity 

J, in a flow at right angles to its axis. The intensity of the magnetic 

field on the surface of the cylinder is equal, in absolute value, to 

H, = 2J/cr; from this, we find that surface current density, which is 

constant over the surface, has the absolute value i = J/2 IT I-; the total 

surface current is J. Thus we conclude that the net current flowing on 

the cylinder surface is equal to the given current, and in the opposite 

direct ion. 

For the case of flow over a body of revolution in whose interior a 

solenoid is arranged along the axis, the currents flowing on the surface 

are closed and in a direction opposite to those in the solenoid. 

Now let us consider flow at large but finite values of Rn. In this case 

the tangential discontinuity becomes diffused over a region of thickness 

am = W-q, where L is a characteristic length [ 2 1 . Near the surface of 

the body there appears a thin layer whose properties are similar to those 

of the Prandtl boundary layer. ‘lhe components of velocity and field in- 

tensity, normal and tangential to the body surface, are of the order 

H; - ii,, (2.1) 

where l’, and Ho are a characteristic velocity and magnetic field intens- 

ity, respectively. Ihe fl ow in such layers has been studied in detail by 

Xgulev. 

Since in practice the case R - 1 is of interest, it is certain that I 
in all cases the magnetic boundary layer is much thicker than the viscous 

layer. This makes it possible to omit the viscous terms in equations (1.1)) 

putting w = 0. After solving the equations for the magnetic boundary 

layer, the problem is solved for the viscous boundary layer, taking the 

boundary conditions from the magnetic layer problem already solved. 

Let us consider the flow in the layer for this flow regime, restrict- 

ing ourselves to the case of plane flow. We will first make the following 

observations. From equation (1.2) it follows that the electrical intensity 

vector is in the direction perpendicular to the plane of the flow, along 

the z-axis, so from Rot E = 0 we obtain E = const, and from the condition 

at infinity (1.5) it follows that EL = 0. ’ 
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Therefore the last of equations (1. l), which express the connection 

between the magnetic and hydrodynamic fields, may be taken in the form 

of (1.2), with E = 0: 

[VxH]-&RotH=O (2.2) 

Thus, in plane flow there is no polarization of the fluid. This is 

true also for axisymnetric flows. 

With this observation, we now write out equations (1.1) (the last 

equation is taken in the form (2.2), making the usual boundary layer 

assumptions based on (2.1): 

In these equations, x and y are the usual curvilinear orthogonal co- 

ordinates for a boundary layer, y is taken normal to the body and x along 

the curve defining the body, u and v are the velocity components in the 

(2.3) 

directions of x and y respectively, and hz and hy are the components of 
H. 

The integral of the second of equations (2.3) is 

P+&XZ=P,(r) (2.4) 

where p,(x) is the pressure on the outer edge of the boundary layer. 

The boundary conditions for solving equations (2.3) are taken from the 

solution of the problem with RR equal to infinity. Gn the outer edge of 

the boundary layer the velocity assumes a given value, determined from 

the solution of the flow problem in the absence of a magnetic field, and 

the magnetic field intensity goes to zero: 

ZJ = uo (z), 11, := 0 for y-00 (2.5) 

At the wall we have the condition that there shall be no flow through 

the surface, and we have the value IfO(x) of the tangential component of 

the magnetic field, here given after being found from the solution of the 
field equations inside the body for I; = m : 

u = 0, I/, = I/, (Z, for y=o (2.6) 

Note that if hy = 0 at the wall for Rm = m , then for finite Rm this 

quantity is clifferent from zero, which leads to the appearance of 
“magnetic drag”. 

I&t us determine the net (hydrodynamic and magnetic) force acting on 

the body, calculated for unit length of the body. Taking into account the 
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order of magnitude of the terms, putting H* = Ho*, H = 7 Ho in equations 
(1.12), we obtain 

E,= - $[ p+Fj b+ &$~,(~)h,d~ 

Here x is again a length along the curve defining the body, T is the 
unit vector in the direction tangential to the body. ‘lhe integration is 
in the direction of increasing x. 

Using equation (2.4) we have 

rids= ~p&)ndz = 0 
(D’ Alembert’ s 

Paradox) 

Therefore, for the magnetic force we obtain the expression 

The expression in (2.7) is the integral of the tangential forces applied 
as it were to the body surface, although in fact this force, which may be 
called the magnetic drag force, is really applied to the magnetic field 
sources, as noted above. 

The force Fm is directed away from the direction of motion of the body, 
since magnetic energy is dissipated in the boundary layer and transformed 
into Joule heat. Therefore, to maintain stationary motion it is necessary 
to get rid of the energy which is used up in drag. Introducing the dimen- 
sionless coefficient of magnetic drag cxII, from equations (2.1) (and 
allowing for the orders of hx and h,,) we obtain 

1-102 const FTn 
C.Xnl = 

-. 
‘/2&y,y v 1% : Cxm = -q*Pool/‘,‘L (2.8) 

The constant in the expression for the magnetic drag depends on the 
geometry of the body and the geometry of the magnetic source distribution. 
It will be noted that c -R - 1’2, by analogy with the case of viscous 

resistance, where cz- fll-1’2mwhen R is the ordinary i3eynold.s nunber. 

We may also note the possibility that the magnetic boundary layer, 
which thickens toward the rear of the Kdy, has in turn an effect on the 
potential flow; this leads to the appearance of a drag which depends on 
pressure forces. This drag may be called “magnetic profile drag”. 
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